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An Approximate Dynamic Spatial Green’s
Function for Microstriplines

Y. LEONARD CHOW, MEMBER, IEEE, AND IBRAHIM N. EL-BEHERY

Abstract-A dynamic model of both charge aud current fmageR is

constructed to give rise to a frequency-dependeut dyadic Greeu’s function

in the space domain for rnicrostripfiues. while the spatial Green’s function
is appt’oxfmatq its image model is very simple, and the propagation

constants calculated from it agree well with published results.

L INTRODUCTION

T
HE DYADIC Green’s function in the spectral

domain for microstriplines has been derived by Den-

linger [1]. The expression of this Green’s function, how-

ever, while being exact, is quite complicated making its

use difficult in arbitrarily shaped structures.

The dyadic Green’s function in the space domain, on

the other hand, may overcome this difficulty, but it is

generally not known in a closed form. A static equivalent,

however, has been derived by Silvester [2] from a model of

charge images. The simplicity of this model and the good

physical insight it gives naturally suggest the possibility of

its extension to a dynamic model that can reasonably

approximate the dyadic Green’s function at the higher

frequencies.

While such an approach may be used to construct

dynamic Green’s functions in three dimensions for arbi-

trarily shaped microstrip structures, this paper, being a

first attempt in this direction, considers only the extension

to the Green’s function in two dimensions for microstrip-

lines.

In this paper the two-dimensional Green’s function is

defined as the kernel function of the integral equation
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Fig. 1. (a) A line current ~. on a grounded dielectric substrate. (b) The
equivalent of (a): a dielectric substrate with two true currents. (c) The
mojel for the outside (dashed) region with true currents and charges
*Jo and t U. and image charges o.. The magnitudes of the images
are indicated with K= (1 – {,)/(1 + c,). The separation between adja-
cent images is 2d. (d) The model for the inside (dashed) region.

Eta.(x)= J:(x,x’)”jo(x’)dx’ (1)

where, according to the geometry of Fig. l(a),

5(X,X’)=

[

Gxx(x, x’) GXZ(X,X’)

Gzx(x,.x’) Gzz(x,x’) 1
(2)

and where ~o(x) and ~t~~(x) are, respectively, the density

of the current vector and the tangential electric field

vector on the surface of the grounded dielectric substrate

of Fig. I(a).
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II. THE DYNAMIC MODEL FOR THE DYADIC

GREEN’S FUNCTION

By simple Deflection from the conducting ground plane,

the configuration of Fig. l(a) can be replaced by its

electrical equivalent shown in_Fig. 1(b). In the latter vye

have two parallel currents, JO and its reflection – JO,

bracketing a substrate twice the original in thickness,

Under a static condition there is no electric field, and,

according to the Biot–S~vart law> the magnetic field dis-

tribution generated by JO and – JO is not affected by the

presence of the dielectric substrate. When the currents

begin to oscillate slowly, however, two types of electric

fields appear. The first type is due to the changing mag-

netic field according to Faraday’s law. As Faraday’s law is

not dependent on the medium dielectric constant, this

electric field distribution is again not affected by the

presence of the dielectric substrate. This means that this

type of electric field is accounted for by the two true

currents alone without any current images from the di-

electric boundaries in Fig. l(b).

The second type of electric field is due to the charges UO

and – 00 generated by the oscillating currents JO and – JO

through the continuity equation

–Jilq) = v -~o. (3)

This type of electric field is affected by the presence of the

dielectric substrate. To satisfy the boundary condition on

the tangential electric fields, therefore, according to

Silvester [2], one may assume that they are generated by

two series of charge images u.(n = 1,2,. ..) in addition to

the true charges O. and – UW One series is for the field

outside the dielectric substrate and the other for the field

inside the substrate, as shown in Figs. l(c) and (d).

According to the above and for propagating currents

with a phase factor e ‘Jk,z the net electric field is the sum

of the above two types of’ fields, i.e.,

where, in the first type, the vector potentials A-; and A–i

are obtained from the true currents ~0 and – ~. through

(5)

and where, in the second type, the scalar potentials ~~,

%, and % are obtained from the true charges 00> – IJO,
and their images o. by

III. LIMITS AND JUSTIFICATION OF THE DYNAMIC

MODEL

The electric field in [4] is obtained through the funda-

mental laws of Biot– Savart, Faraday, the continuity equa-

tion, and Coulomb, under low-frequency conditions. Evi-

dently, therefore, the electric field must reasonably satisfy

the tangential boundary condition on the dielectric–air

interface for the relatively short distances normally en-

countered in microstrip structures, i.e., distances, say, less

than A/8 in the dielectric.

More rigorously, however, it can be shown that the

electric field in (4) satisfies the four Maxwell’s equations

in differential form provided that the Lorentz condition

[3] is defined as

It is to be noticed that while the continuity equation

applies t~ the true charge and current pairs (uo, ~o) and

(– Uo, – JO), it does not apply to the charge images o. as

there are no corresponding current images. This does not

present a problem, however, since the images do not

physically exist. They are introduced only as a mathemati-

cal convenience to simplify the field representation inside

the region being considered while they themselves are

located outside.

IV. THE DYADIC GREEN’S FUNCTION

Assuming ~. to be a unit line current with the line

directed along the z axis, the components of the dyadic

Green’s can easily be obtainqd from (3) to (6). In these

equations, if the unit current Jo is in the x direction, the x

and z components of the electric field on the surface of

the substrate give GXX and GX=, respectively. similarly

taking the unit current ~. in the z direction leads to G.,..
and G,,.

It can easily be observed from (4) and (6) that the cross

components are equal, i.e., GXZ= GZX. Therefore, only

three elements in the 2 x 2 matrix of the dyadic Green’s

function need be computed. It may also be of interest to

notice from (4) that the cross components are due to the

electric field of the second type only, i.e., they are gener-

ated from the scalar potentials @ only.

The detailed expressions for the components GXX, GX.,

and G== are given in Appendix A. These components are

plotted in Fig. 2 as functions of the distance along the

surface of the dielectric substrate. The plots show the

magnitudes of the components calculated for outside and

@i(P) = *JHJ2)(%IZ ‘E’l)”l(p’)db’,
inside the dielectric. As can be seen, the outside and

i=o, 1,2, -..
inside Green’s function match well in the region of inter-

est, i.e., less than A/8 inside the dielectric, ‘or x < 7d in

(6) Fig. 2. They deviate appreciably from each other, how-

where ~ is the radius vector, ● is the permittivity of the ever, for larger distances. Comparisons are made, there-

region being considered, kt is the corresponding propaga- fore, between the outside and inside Green’s functions

tion constant in the transverse xy plane, and H~2) is a with the exact values obtained from Denlinger’s spectral-

Hankel function of the second kind. domain Green’s function by Fourier transform. The com-
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Fig. 2. The tangential components of the two dyadic Green’s func-

tions, inside and outside the dielectric substrate at k== 0.88 ~
~,=s,d=s mm, andj= 1 GHz.
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Fig, 3. A comparison between the Green’s function components G..

and that transformed from Denlinger’s at k== O,C,= 3, d= 3 mm, and
{;t~~e~~nd-a;oint of 10-percent difference between inside and

parison shows that the inside Green’s function appears to

be closer to the exact values than the outside one, as

shown in the example in Fig. 3. For this reason, the inside

Green’s function is used in the example below.

V. PROPAGATION CONSTANTS OF MICROSTRIPLINES

A good test for the validity of the Green’s function of

the dynamic model is whether it can produce the

frequency dispersion characteristics in the propagation

constants of microstriplines which cannot be obtained by

the Green’s functions of the static model.

To this end we use the inside Green’s function in (1)

and apply the latter to the conducting surface of a micro-

stripline. If we take the origin to be at the center of the

conducting strip and denote the latter’s width by w, then

(1) becomes

Etan(x)= J-_:;,=(x- x’)”~;(x’)dx’ (8)

in which the unknown are the propagation constant

k,= ~-” and the current density ~0 on the strip.

To solve (8) numerically, we use the point-matching

moment method in which the conducting strip is divided

into 2ZV equal segment> each of width A. If we let

E,,.(x) = -fEX + ~E, and Jo(x)= iVX + .2Jz, where 3 and .2

are unit vectors on the conducting strip, and if we notice

the symmetries J=(x) = J=( – x) and JX(X) = – JX( – x), then

(8) can be expanded in terms of positive x only.

E=(x)= ~ ~x’+A’2 [ {G==(x - X’)+ GZZ(X+X’)}JZ(X’)

~=] x,–A/2

+ { GZX(X – X’) – G=X(x + X’)}JX(X’) ]dx’ (9)

and

EX(X)= ~ ~Xr+A’2 [ {GXZ(X- X’)+ GXZ(X+X’)}JZ(X’)
i-l x,–A/2

+ { GX.(X – X’) – GXX(X + X’)}JX(X’)]dX’ (10)

where xl, i=t l,””” , t N are the center points of the

segments. When the segment width A is sufficiently small,

one can approximate the integral over the ith segment at a
point XP, p +i, by assuming the current density and the

Green’s function to be of constant values over the seg-

ment. When i =p, however, the integral (self-term) must

be evaluated since the Green’s function becomes un-

bounded. This can be accomplished by taking the current

density to be uniform and assuming the conducting strip

to have a small but finite thickness. Expressions for the

integrals in (9) and (10) and the details of their evaluation

are given in Appendix B.

By matching the electric field at the center points XP,
P=l,. . . , N to zero we obtain a set of linear homogeneous

equations of the form

F.i=o (11)
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Fig. 4. The guide wavelengths of the microstripline at different q as a
function of frequency; a comparison between those of Itoh and Mittra
and those from the inside spatial Green’s function.

where ? is a 2N x 2N matrix depending on kZ, and ~ a

column vector whose components are the surface currents

in the x and z directions on each segment. For (11) to

have a nontrivial solution, the determinant of ~ must

vanish, i.e.,

l]i(kz)ll=O. (12)

The solution of (12) provides the required value of k=.

The dispersion results which are obtained using N= 2

are shown in Fig. 4 in terms of the ratio of the guide to

the free-space wavelengths at different frequencies, for

various dielectric constants of the substrate. The figure

also shows the corresponding results given in Itoh and

Mittra [4] for comparison. As observed, the agreement is

good for the range of parameters considered.

Finally a word about the computing time. It can be

shown that in Green’s function expressions (4), the infinite

series converges considerably faster than a geometric

series. For c, between 3 and 20, about 20–80 terms are

required to achieve a 6-decimal-place accuracy. Using an

IBM 370/ 158 machine, this means that the computing

time required to obtain a single point in Fig. 4 is between

0.5–2 s depending on the relative permitivity of the sub-

strate used.

VI. CONCLUSION

The dynamic model of current and charge images

proves to be a good approximation for the spatial dyadic

Green’s function of microstriplines; the crucial test has
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Fig. 5. A numbering system for the set of currents and charges (true

and/or image) of the dynamic model for (a) the region outside the
dielectric and (b) the region inside the dielectric.

been its capability of showing the small frequency disper-

sion in the propagation constants of microstriplines. Be-

cause the model is simple, the computer program is easy

to write, and, as shown in the example, the computer time

is short.

The model fails, however, outside the normal range of

parameters where surface waves play a dominant part

since the model does not take them into account.

While the Green’s function derived here is in two di-

mensions, the dynamic model is evidently valid for both

two and three dimensions similar to the static model by

Silvester [2], [5]. It is believed, therefore, that this model

can be used to generate the three-dimensional Green’s

function for the frequency dependent properties of arbitr-

arily shaped microstrip structures.

It may be added that while the computer time is short

in calculating the propagation constants using the spatial

Green’s function, it may or may not be shorter than that

using the spectral Green’s function. An example of the
latter may be that with carefully chosen moment-method

expansion functions, recently by Jansen [6]. Nevertheless,

the spectral Green’s function is very complicated; there-

fore, its application to the arbitrarily shaped microstrip

structures may be more difficult than the application with

the spatial Green’s function.

APPENDIX A

EXPRESSIONS OF THE DYADIC GREEN’S FUNCTION

To put the Green’s function in a simple form suitable

for computational purposes, we adopt a numbeling sys-

tem which orders the set of currents and charges of the

dynamic model for the regions outside and inside the

dielectric, in the manner shown in Fig. 5. In this figure a.

and b. denote the amplitudes of the rzth line current and

line charge (true and/or image) located at the distance y.

along the y axis from the origin.

According to this system, the components of the

Green’s function for both the outside and the inside
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regions are expressed in the form

[

Gxx(x, x’) = ~ ang:!,n + ~

~=1 ~=] 1bng.!x,n e ‘JkZZ (Al)

‘Xz(x’x’)=lz,bng:’nle-jk’z(A2)

Gzx(x, x’) = GX2(X,X’) (A3)

[

Gzz(x, x’)= ~ ang<,n+ ,

1
g b.gzn e-’’” (A4)

~=1 ~=1

where theg.~ andg~ functions are, respectively, the vector

and scalar potentials of the nth current and charge

sources as derived from (4)–(6). Specifically, the g’s are

and

A = –.Mk#z(fn) = d.,.g.., n (A6)

where

k,= (k: –ti2pOe)1’2 (A7)

P.=[(X–X’)2+(H02]1’2. (A8)

Ax(pfl)and Az(pn)are vector potentials of unit line currents
at the location (x’,y.) and pointing in the respective x and

z directions, d is the thickness of the grounded dielectric

substrate, and c is the permittivity of the medium equaling

to ~Oc,inside the dielectric and to COoutside.

For the g+’s we have

k2
* =–%(g.., n ~z z P.)= & H$2)(&pn) (All)

where +.(PJ and C+Z(pn)are the scalar potentials derived
from the charges, generated according to (3) and Fig. 5

from the true currents pointing in the respective x and z

directions, The true currents are located at (x’,-Y.), n = 1,2.
It is to be noted that for microstrip applications, the

propagation constant k, in the transverse plane becomes

imaginary for the region outside the dielectric. In this case
‘2) and HIthe Hankel functions HO (2) become modified

Bessel functions of the second kind.

APPENDIX B

EVALUATION OF THE INTEGRALS IN (9) AND (10)

Through substitutions of (A1)-(A4), the integrals in (9)

and (10) can be reduced to a sum of integrals of the

following basic form:

J,

X, + A/2 ~
S&,n(xl, xp) = ~ _A,2 &@n(x – xpJn)JJx)dx (B1)

where XP is the field matching point at the center of the

pth segment, (xi,yJ are the coordinates of the source

point (according to Fig. 5, the nth source, current or

charge), the superscript C = ~ or +, and the subscripts

a,~=x orz.

When iJp or n # 1 (i.e., yn #d in Fig. 5), g~p,n and Jp(x)

can be considered to be constant over the segment width

A when the latter is sufficiently small. Equation (B 1) may

thus be approximated to

‘&.(xi~xP) = g$,n(xi : ‘p~Yn)l/3i (B2)

where

16, = JD(x,). A. (B3)

When i =p and n = 1 (i.e., y.= d), (B 1) becomes the

self-term and the approximation (B2) diverges. An alter-

native evaluation of (B 1) must therefore be used. If the

current density Jp(x) can be assumed to be constant over
the segment width (i.e., when Jp is known a priori to be

bounded on the segment) the resulting integral can then

be treated in one of three different ways depending on the

type of the g-function involved.

First we consider S:,,. From (A1O) it is seen that g&, is

skew-symmetric about the center of the segment; it

follows, therefore, that

Sj, ,( Xi,x,) =0. (B4)

Next we consider S:.,, and S~, ~. These, according to

(A5), (A6), and (Al 1) are integrals of the Hankel function

H~) over small arguments, the approximate evaluation of

which are well known from Barrington [7] and are given

by

‘f., l(X1, ‘i) = ~ D.Iai, a=xorz (B5)

‘j,l(xi,x,) = ~DeI=, (B6)

where

D= A1+A2. [-l+ ln(k,~)] (B7)

(
A1=l–j 0.367467–~ ln2

)
and A2= –j:.

In the third case we have S&,,. From (A9) we can see

that the integrand g!’, ~ is an x derivative of @x(pI). The

integral, therefore, diverges since +X(0) is unbounded. To

avoid this situation, we assume that the conducting strip

has a small but finite thickness t and that the current sheet
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JX is concentrated at the center of the conductor so that approximation of the function H[z), we arrive, after the

its separation from the boundary is t/2. The integral evaluation of some standard integrals, at the result

converges as a result and assumes the value

‘$,I(X,,X,)= &~[2)(k/$)” ~zxi (B8)
—,–

which is independent of t provided that t<<A.

Finally, when a current density .lP(x) is unbounded on

a segment, as is the case for ~,(x) at the edges of the

conducting strip, the validity of its approximation by a

constant value should be examined. The two integrals

which concern us then are S=:,, and S%, ~ evaluated on an

edge segment. Under the approximation of the constant

current density, the first integral has the finite value given

in (B6) while the second integral vanishes as in (B4). We

may assume that the error introduced in the first integral

is smaller than its true value and can thus be neglected.

The error introduced i the second integral, however, is

equal to its true value k d may not, therefore, be ignored.

To evaluate S&~ on ‘bn edge segment, we assume a

current density .lZ that satisfies the edge condition. We

may thus write

JZ(X)=;[A(;-X)]-’’2]ZN. (B9)

Using (B9) in (B 1) and applying the small argument

%!,(xN,x.)= -j% ~FI.N (B1O)

where

F=jfi ~,A‘ln(3–2ti). (Bll)
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