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An Approximate Dynamic Spatial Green’s

Function for

Microstriplines

Y. LEONARD CHOW, MEMBER, IEEE, AND IBRAHIM N. EL-BEHERY

Abstract—A dynamic model of both charge and current images is
constructed to give rise to a frequency-dependent dyadic Green’s function
in the space domain for microstriplines. While the spatial Green’s function
is approximate, its image model is very simple, and the propagation
constants calculated from it agree well with published results,

1. INTRODUCTION

HE DYADIC Green’s function in the spectral

domain for microstriplines has been derived by Den-
linger [1]. The expression of this Green’s function, how-
ever, while being exact, is quite complicated making its
use difficult in arbitrarily shaped structures.

The dyadic Green’s function in the space domain, on
the other hand, may overcome this difficulty, but it is
generally not known in a closed form. A static equivalent,
however, has been derived by Silvester [2] from a model of
charge images. The simplicity of this model and the good
physical insight it gives naturally suggest the possibility of
its extension to a dynamic model that can reasonably
approximate the dyadic Green’s function at the higher
frequencies.

While such an approach may be used to construct
dynamic Green’s functions in three dimensions for arbi-
trarily shaped microstrip structures, this paper, being a
first attempt in this direction, considers only the extension
to the Green’s function in two dimensions for microstrip-
lines.

In this paper the two-dimensional Green’s function is
defined as the kernel function of the integral equation
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Fig. 1. (a) A line current J, on a grounded dielectric substrate. (b) The
equivalent of (a): a dielectric substrate with two true currents. (c) The
model for the outside (dashed) region with true currents and charges
*Jy and *¢, and image charges o,. The magnitudes of the images
are indicated with K=(1—¢)/(1+¢,). The separation between adja-
cent images is 2d. (d) The model for the inside (dashed) region.
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where, according to the geometry of Fig. 1(a),
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G : 7Y xx xz 2
(X X ) sz(x’x/) Gzz(x,x,) ( )

and where Jy(x) and Etan(x) are, respectively, the density
of the current vector and the tangential electric field
vector on the surface of the grounded dielectric substrate
of Fig. 1(a).
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II. Tuar DyNaMIC MODEL FOR THE DYADIC
GREEN’s FUNCTION

By simple reflection from the conducting ground plane,
the configuration of Fig. 1(a) can be replaced by its
electrical equivalent shown in Fig. 1(b). In the latter we
have two parallel currents, J, and its reflection —J,,
bracketing a substrate twice the original in thickness.

Under a static condition there is no electric field, and,
according to the Biot—Savart law, the magnetic field dis-
tribution generated by J, and —J; is not affected by the
presence of the dielectric substrate. When the currents
begin to oscillate slowly, however, two types of electric
fields appear. The first type is due to the changing mag-
netic field according to Faraday’s law. As Faraday’s law is
not dependent on the medium dielectric constant, this
electric field distribution is again not affected by the
presence of the dielectric substrate. This means that this
type of electric field is accounted for by the two true
currents alone without any current images from the di-
electric boundaries in Fig. 1(b).

The second type of electric field is due to theAcharges T
and — o, generated by the oscillating currents J, and —J,
through the continuity equation

)

This type of electric field is affected by the presence of the
dielectric substrate. To satisfy the boundary condition on
the tangential electric fields, therefore, according to
Silvester [2], one may assume that they are generated by
two series of charge images 6,(n=1,2,---) in addition to
the true charges o, and — o, One series is for the field
outside the dielectric substrate and the other for the field
inside the substrate, as shown in Figs. 1(c) and (d).

According to the above and for propagating currents
with a phase factor e /%7, the net electric field is the sum
of the above two types of fields, i.e.,

—-jw60=V'f0.

E=—jon4i +45)=V|of vor+ S| @

where, in the first type, the vector pgtentials {J and ffo_
are obtained from the true currents J, and —J, through
o 1 hond b T e s
4oB) =35/ HP (ko —p')Jo(0")dp (5)

and where, in the second type, the scalar potentials ¢q,

¢, and ¢, are obtained from the true charges g, — oy,
and their images g, by
~ 1 N ey e )
o(p)= ngfHéz’(ktlp—p Do(8)dp’,  i=0,1,2,---
(6)

where p is the radius vector, € is the permittivity of the
region being considered, £, is the corresponding propaga-
tion constant in the transverse xy plane, and H{? is a
Hankel function of the second kind.
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III. LiMITS AND JUSTIFICATION OF THE DYNAMIC
MobEL

The electric field in [4] is obtained through the funda-
mental laws of Biot—Savart, Faraday, the continuity equa-
tion, and Coulomb, under low-frequency conditions. Evi-
dently, therefore, the electric field must reasonably satisfy
the tangential boundary condition on the dielectric—air
interface for the relatively short distances normally en-
countered in microstrip structures, i.e., distances, say, less
than A/8 in the dielectric.

More rigorously, however, it can be shown that the
electric field in (4) satisfies the four Maxwell’s equations
in differential form provided that the Lorentz condition
[3] is defined as

V(45 +Xo‘)+jwe[qsg +o5 + > ¢,,}=0. @)
n=1

It is to be noticed that while the continuity equation

applies to the true charge and current pairs (0q,Jo) and
(— 69, —Jo), it does not apply to the charge images o, as
there are no corresponding current images. This does not
present a problem, however, since the images do not
physically exist. They are introduced only as a mathemati-
cal convenience to simplify the field representation inside
the region being considered while they themselves are
located outside.

IV. THe Dyapic GREEN’S FUNCTION

Assuming J, to be a unit line current with the line
directed along the z axis, the components of the dyadic
Green’s can easily be obtained from (3) to (6). In these
equations, if the unit current J, is in the x direction, the x
and z components of the electric field on the surface of
the substrate give G,, and G, respectively. Similarly
taking the unit current J;, in the z direction leads to G,
and G,,.

It can easily be observed from (4) and (6) that the cross
components are equal, ie, G,=G,,. Therefore, only
three elements in the 2X2 matrix of the dyadic Green’s
function need be computed. It may also be of interest to
notice from (4) that the cross components are due to the
electric field of the second type only, i.c., they are gener-
ated from the scalar potentials ¢ only.

The detailed expressions for the components G,,, G,,,
and G,, are given in Appendix A. These components are
plotted in Fig. 2 as functions of the distance along the
surface of the dielectric substrate. The plots show the
magnitudes of the components calculated for outside and
inside the dielectric. As can be seen, the outside and
inside Green’s function match well in the region of inter-
est, i.e,, less than A/8 inside the dielectric, or x <7d in
Fig. 2. They deviate appreciably from each other, how-
ever, for larger distances. Comparisons are made, there-
fore, between the outside and inside Green’s functions
with the exact values obtained from Denlinger’s spectral-
domain Green’s function by Fourier transform. The com-
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parison shows that the inside Green’s function appears to
be closer to the exact values than the ouiside one, as
shown in the example in Fig. 3. For this reason, the inside
Green’s function is used in the example below.

V. PROPAGATION CONSTANTS OF MICROSTRIPLINES

A good test for the validity of the Green’s function of
the dynamic model is whether it can produce the
frequency dispersion characteristics in the propagation
constants of microstriplines which cannot be obtained by
the Green’s functions of the static model.

To this end we use the inside Green’s function in (1)
and apply the latter to the conducting surface of a micro-
stripline. If we take the origin to be at the center of the
conducting strip and denote the latter’s width by w, then
(1) becomes

Eu)= [ Glamxyiiray @

in which the unknown are the propagation constant

k, =V« poeoe, — k7 and the current density J, on the strip.

To solve (8) numerically, we use the point-matching
moment method in which the conducting strip is divided
into 2N equal segments, each of width A. If we let
E, (x)=XE_+3E, and Jy(x)=xJ +2J,, where X and Z
are unit vectors on the conducting strip, and if we notice
the symmetries J,(x)=J,(— x) and J, (x)= —J, (— x), then
(8) can be expanded in terms of positive x only.

1=1"vX

E()= 3 [7 (6= 2)+ Gt 1))

+{ G (x = x) = G (x+x)}J(x) ]dx" (9)
and

x,+A/2[ { ze(x - X’) + ze(x + x/)}JZ(X/)

E0=3 [

i=1Yx—-4/2
+{Ge(x—x) = G (x + x) }J(x") ]dx" (10)

where x,, i==*1,---,+N are the center points of the
segments. When the segment width A is sufficiently small,
one can approximate the integral over the ith segment at a
point x,, p#i, by assuming the current density and the
Green’s function to be of constant values over the seg-
ment. When i=p, however, the integral (self-term) must
be evaluated since the Green’s function becomes un-
bounded. This can be accomplished by taking the current
density to be uniform and assuming the conducting strip
to have a small but finite thickness. Expressions for the
integrals in (9) and (10) and the details of their evaluation
are given in Appendix B.

By matching the electric field at the center points x,,
p=1,---,N to zero we obtain a set of linear homogeneous
equations of the form

=0

'TJII
m~i

(11)



CHOW AND EL-BEHERY: GREEN’S FUNCTION FOR MICROSTRIPLINES

0.9 I ﬁy T I
€0 3§ d=1.27mm
o8l € a7 w=1.27 mm
o
- W-g|
o7 € = 2.65
~<
>
< 06— < Taz
T
5 os
zZ
W
i \ A €, =8.875_
4 o4 < A
<
=
w o.
2 ] s =20
> ——
©
0.2
— ITOH AND MITTRA
(CLOSED MICROSTRIP) [3]
o o FROM GREEN'S FUNCTION { INSIDE)
i
0.0
o] 2 4 8 8 10

FREQUENCY (GHz)

Fig. 4. The guide wavelengths of the microstripline at different ¢, as a
function of frequency; a comparison between those of Itoh and Mittra
and those from the inside spatial Green’s function.

where T is a 2N X2N matrix depending on k,, and I a
column vector whose components are the surface currents
in the x and z directions on each segment. For (11) to

have a nontrivial solution, the determinant of T must
vanish, 1.e.,

IT (k)| =0. (12)

The solution of (12) provides the required value of k.

The dispersion results which are obtained using N=2
are shown in Fig. 4 in terms of the ratio of the guide to
the free-space wavelengths at different frequencies, for
various dielectric constants of the substrate. The figure
also shows the corresponding results given in Itoh and
Mittra [4] for comparison. As observed, the agreement is
good for the range of parameters considered.

Finally a word about the computing time. It can be
shown that in Green’s function expressions (4), the infinite
series converges considerably faster than a geometric
series. For ¢, between 3 and 20, about 20-80 terms are
required to achieve a 6-decimal-place accuracy. Using an
IBM 370/158 machine, this means that the computing
time required to obtain a single point in Fig. 4 is between
0.5-2 s depending on the relative permitivity of the sub-
strate used.

VI

The dynamic model of current and charge images
proves to be a good approximation for the spatial dyadic
Green’s function of microstriplines; the crucial test has

CONCLUSION
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Fig. 5. A numbering system for the set of currents and charges (true
and/or image) of the dynamic model for (a) the region outside the
dielectric and (b) the region inside the dielectric.

been its capability of showing the small frequency disper-
sion in the propagation constants of microstriplines. Be-
cause the model is simple, the computer program is easy
to write, and, as shown in the example, the computer time
is short.

The model fails, however, outside the normal range of
parameters where surface waves play a dominant part
since the model does not take them into account.

While the Green’s function derived here is in two di-
mensions, the dynamic model is evidently valid for both
two and three dimensions similar to the static model by
Silvester [2], [5]. It is believed, therefore, that this model
can be used to generate the three-dimensional Green’s
function for the frequency dependent properties of arbitr-
arily shaped microstrip structures.

It may be added that while the computer time is short
in calculating the propagation constants using the spatial
Green’s function, it may or may not be shorter than that
using the spectral Green’s function. An example of the
latter may be that with carefully chosen moment-method
expansion functions, recently by Jansen [6]. Nevertheless,
the spectral Green’s function is very complicated; there-
fore, its application to the arbitrarily shaped microstrip
structures may be more difficult than the application with
the spatial Green’s function.

APPENDIX A
EXPRESSIONS OF THE DYADIC GREEN’S FUNCTION

To put the Green’s function in a simple form suitable
for computational purposes, we adopt a numbering sys-
tem which orders the set of currents and charges of the
dynamic model for the regions outside and inside the
dielectric, in the manner shown in Fig. 5. In this figure a,
and b, denote the amplitudes of the nth line current and
line charge (true and/or image) located at the distance y,
along the y axis from the origin.

According to this system, the components of the
Green’s function for both the outside and the inside
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regions are expressed in the form

<uuxh[2%&”+2m%4 ke (Al)

n n=1
@uxklzmﬁﬁfw (A2)
n=1

G (x,x7) = G (x,x')

2 0
Gzz(x,X')=[ > oagh,+ 2 bng?;,n}e"":l (A4)

n=1 n=1

(A3)

where the g and g? functions are, respectively, the vector
and scalar potentials of the nth current and charge
sources as derived from (4)—(6). Specifically, the g’s are

w
e = —JwltoA(0,) = — —% HP(kp,)  (AS)
and
g4 = —Jjorod,(0,) =85 n (A6)
where
2 2 1/2
k,= (k2 = wug€) (A7)

)",

A, (p,) and 4,(p,) are vector potentials of unit line currents
at the location (x’,y,) and pointing in the respective x and
z directions, d is the thickness of the grounded dielectric
substrate, and € is the permittivity of the medium equaling
to €y¢, inside the dielectric and to ¢, outside.

For the g*’s we have

=[(x=x)+(y,— (A8)

@ (x x) @
8%n™ 35 ¢x() 404 ) H{(k,p,)

+L 1_2M H®(kp,)| (A9)

k.o, 2 AT

0 kk, x—x
¢ (=0 V= — — = — t (2)
gxz,n( gzx,n) x ¢z(pn) .] Aewe 0, H (ktpn)
(A10)
K2

ghn= ¢ (0.)= HEP(kp,) (A11)

4w€

where ¢.(p,) and ¢,(p,) are the scalar potentials derived
from the charges, generated according to (3) and Fig. 5
from the true currents pointing in the respective x and z
directions. The true currents are located at (x',y,), n=1,2.

It is to be noted that for microstrip applications, the
propagation constant k, in the transverse plane becomes
imaginary for the region outside the dielectric. In this case
the Hankel functions H{? and H{® become modified
Bessel functions of the second kind.
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APPENDIX B
EVALUATION OF THE INTEGRALS IN (9) AND (10)

Through substitutions of (A1)-(A4), the integrals in (9)
and (10) can be reduced to a sum of integrals of the
following basic form:

x,+A/2
Sn(xe)= [ aalx =5 Ip(x)dx (B)

where x, is the field matching point at the center of the
pth segment, (x;,y,) are the coordinates of the source
point (according to Fig. 5, the nth source, current or
charge), the superscript C=A4 or ¢, and the subscripts
a,B=x orz.

When iJp or n#1 (i.e., y,#d in Fig. 5), g4 , and Jpg(x)
can be considered to be constant over the segment width
A when the latter is sufficiently small. Equation (B1) may
thus be approximated to
(B2)

Stxc,l;,n(xh xp) = ga%,n(xi - xp’yn)IBi

where

I, =Jg(x,) A (B3)

When i=p and n=1 (ie, y,=d), (B1) becomes the
self-term and the approximation (B2) diverges. An alter-
native evaluation of (B1) must therefore be used. If the
current density Jp(x) can be assumed to be constant over
the segment width (i.e., when J; is known a priori to be
bounded on the segment) the resulting integral can then
be treated in one of three different ways depending on the
type of the g-function involved.

First we consider S, ,. From (A10) it is seen that g8, | is
skew-symmetric about the center of the segment; it
follows,therefore, that

qu))c, l(xi’xt) =0

Next we consider S2 | and S2 ;. These, according to
(AS5), (A6), and (A11) are integrals of the Hankel function
H{? over small arguments, the approximate evaluation of
which are well known from Harrington [7] and are given
by

(B4)

Sat1(% %)= _Z’“" D1, a=xorz (BS)
k2

¢ (x.x)= 2D

SZZ,I(xt’xz) 4w¢-:D Izt (B6)
where

A

D=A1+A2~[~1+ In (k,i)] (B7)
2

A1=1—j(0.367 467—% ln2) and A2=—j;.
In the third case we have S, . From (A9) we can see
that the integrand g?, , is an x derivative of ¢,(p,). The
integral, therefore, diverges since ¢, (0) is unbounded. To
avoid this situation, we assume that the conducting strip
has a small but finite thickness ¢ and that the current sheet
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J, is concentrated at the center of the conductor so that
its separation from the boundary is #/2. The integral
converges as a result and assumes the value
a2
1) 3
which is independent of ¢ provided that r<A.

Finally, when a current density Jg(x) is unbounded on
a segment, as is the case for J,(x) at the edges of the
conducting strip, the validity of its approximation by a
constant value should be examined. The two integrals
which concern us then are Sy, ; and Sy, | evaluated on an
edge segment. Under the approximation of the constant
current density, the first integral has the finite value given
in (B6) while the second integral vanishes as in (B4). We
may assume that the error introduced in the first integral
is smaller than its true value and can thus be neglected.
The error introduced ip the second integral, however, is
equal to its true value and may not, therefore, be ignored.
To evaluate S;’;'l on ‘an edge segment, we assume a
current density J, that satisfies the edge condition. We
may thus write

J,(x)= % [A(% - x)]_IﬂIzN.

Using (B9) in (B1) and applying the small argument

1

k
Sxd:v, 1(x3 ;) = Z;:; Hl(z)(kz xi (B8)

(B9)

Generalized Spectral
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approximation of the function H{®, we arrive, after the
evaluation of some standard integrals, at the result

. kzkt 1

Sg,l(xNPxN) ==J doe 2 FLy (B10)
where
F=j\/§gl%6—§ln(3—2\/7). (B11)
t
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Domain Method for

Multiconductor Printed Lines and
Its Application to Turnable
Suspended Microstrips

TATSUO ITOH , SENIOR MEMBER, IEEE

Abstract—An efficient method is developed for obtaining propagation
characteristics of microstripline type structures in which a number of
conductors are located on various interfaces. Specific computations have
been carried out for suspended microstripline structures with tuning con-
ductive septums. A number of data useful for design are included.
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I. INTRODUCTION

HE SPECTRAL domain technique developed by

Itoh and Mittra has been applied to a number of
microstripline structures [1], [2]. It is an efficient numeri-
cal technique having several advantages over many other
methods [3], [4]. However, to date, this technique has been
applied only to the structures in which center conductors
(strips) are located on one of the dielectric interfaces, e.g.,
the air-substrate interface.
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